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Abstract
The validity of the cubic crystal field (CCF) approximation for the interpretation of the
magnetic resonance properties of the Er3+ ion in crystal fields with tetragonal and trigonal
symmetry is examined. The ground state paramagnetic resonance principal g values are
explicitly calculated in terms of the cubic crystal field eigenstates as a function of axial crystal
field strength. It is shown that, depending on the ground state crystal field eigenstate, the widely
accepted CCF approximation of simply taking the average of the trace of the g tensor and
equating it to the g value found in cubic symmetry can lead to a misinterpretation of the ground
state Stark level and the lattice coordination of the ion. The implications for experimentally
reported results are discussed.

1. Introduction

The lattice location and coordination of rare earth (RE) ions
in semiconductors and insulators has been to the forefront of
spectroscopy research for many years [1, 2]. The different
electronic configurations of the ions, coupled with the inner
4f shell electrons being largely shielded from the host crystal
field results in sharp luminescence transitions. The narrowness
of the optical emission coupled with an insensitivity of the
emission wavelength to the host material has resulted in rare
earth ions being used in lasers, fibre amplifiers and in optical
communications. Optimizing the concentration of optically
active ions is crucial for the use of RE ions as luminescence
centres and knowledge of the electronic properties of the
ions when incorporated into suitable hosts can aid in the
improvement of devices [2, 3]. The shielding of the 4f
electrons in the RE ion from the host semiconductor is also
attractive for potential applications in quantum computing with
the possibility of exploiting long coherence times associated
with the weak spin–lattice interactions [4]. To that end
it is often necessary to employ a range of techniques that
are capable of identifying the ion if more than one RE is
incorporated, the RE ion’s lattice location and/or coordination.
Measurements of the g value from electron paramagnetic
resonance experiments (EPR) [5, 6] as well as from Zeeman
measurements [7] are able to distinguish between different RE

ions and for the same ion in different valence states. Ions
with an odd number of electrons obey Kramers theorem and
will have a different Hamiltonian from those with an even
number of electrons. In a lattice site with cubic symmetry
a spin 1/2 centre will produce a single isotropic g value,
gc. For RE centres with less than cubic symmetry the cubic
crystal field (CCF) approximation [8] is widely employed in
which the average of the trace of the g tensor, gav, i.e. gav =
1/3(gxx + gyy + gzz) is compared with gc. When gav is close
to gc, this is often taken as evidence of the identity of the ion,
its valence as well as providing evidence of whether the ion
is located at a substitutional or interstitial site. Despite being
extensively employed [9–12], the average g value calculated
from experiment may not correctly match the cubic g value
predicted from theory. Specific examples of this taken from the
literature will be given in section 2. This discrepancy between
theory and experiment has led to a questioning of the validity
and limits of use of the CCF approximation. The main aim of
this paper is to examine the validity of the CCF approximation
for the trivalent erbium ion in sites with tetragonal and trigonal
symmetry and compare with published experimental results.

The erbium system was chosen as there has been
considerable research effort put in into understanding the
properties of the Er3+ ion as the optical transition wavelength
from the first spin orbit excited state to the ground state occurs
at 1.5 μm. This is a technological important wavelength
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since it matches the minimum in the dispersion of silica
based optical fibres and has acted as the catalyst for the
development of the erbium doped fibre amplifier and optical
doping of materials [1, 2]. In relation to magnetic resonance
measurements the fact that the first excited spin–orbit state
is 6500 cm−1 above the ground state means that the effects
of higher lying states can largely be ignored. Ignoring these
interactions means it is easier to probe the properties of the
ground state with greater confidence. As such erbium is an
ideal ion to study as it is possible to make reliable calculations
and compare them with extensive measurements. In this paper
we begin with a study of the magnetic resonance properties
of the Er3+ in cubic symmetry before examining the lower
symmetry cases.

2. Trivalent erbium in a cubic crystal field

The magnetic resonance ground state properties of the Er3+
ion are largely determined by the eleven electrons located in
the 4f shell. Contributions from other effects, such as the
nuclear hyperfine interaction from the 23% abundant Er167

(with nuclear spin I = 7/2), can be treated within perturbation
theory. The electron configuration of the eleven 4f electrons
results in a spin quantum, S, of 3/2 and an orbital quantum
number, L, of 6. As the 4f shell is more than half full the
total angular momentum quantum number, J , is 15/2. This
produces, in general, a 16-fold degenerate 4I15/2 spin–orbit
(SO) ground state level which is separated by about 6500 cm−1

from the 14-fold degenerate 4I13/2 first excited SO state with
J = 13/2. The important optical transition at 1.5 μm occurs
between these two states. Other higher lying excited states
such as those with J = 11/2 and 9/2 exist as well as 2K15/2

and 2L15/2, however, in the reminder of this paper we will
concentrate on the 4I15/2 ground state and the effects of the
host crystal field.

The incorporation of an Er3+ ion in a host semiconductor
results in Stark splitting of the SO levels, the number and
symmetry of which are determined by the symmetry of the
crystal field. For all symmetries other than cubic, the 16-
fold degenerate SO level splits into eight Kramers doublets.
When the ion is incorporated into a cubic semiconductor with
Td symmetry, group theoretical arguments show that splits
the 16-fold ground state SO level into five Stark distinct
levels. These consist of two Kramers doublets (�6 and �7)
and three quartets (�8), where each � represents the respective
irreducible representations of the double cubic group. Note
that the �6 and �7 levels only occur once. The ordering of
these Stark levels is determined by the relative strength of the
fourth and sixth order crystal field terms in the cubic crystal
field Hamiltonian [8]

Hcubic = B4(O
0
4 + 5O4

4 )+ B6(O
0
6 − 21O4

6 ), (1)

where Om
n are the symmetry related crystal field equivalent

operators associated with each quantum number J . The
coefficients B4 and B6 determine the magnitude of the crystal
field splitting, as a result of the arrangement of the surrounding

cations and anions, and are related to the fourth and sixth order
potentials via

B4 = βA4〈r 4〉 and B6 = γ A6〈r 6〉, (2)

where A4〈r 4〉 and A6〈r 6〉 can be calculated by a point charge
calculation [8] or by the superposition method [13] and the
values of β and γ depend upon L, S and J and have been
tabulated elsewhere1. Note that there are two conventions that
are commonly used to make these types of calculations—the
Stevens normalization convention, which is the one employed
here and the Wybourne normalization convention. The two
approaches use different constants and the interested reader is
referred to section 2.2 of [13] for further information and the
links between the two conventions.

In the seminal work by Lea et al [14] it was shown that
solution to the Hamiltonian in equation (1) can be obtained
using the substitutions

B4 F4 = W x (3a)

and
B6 F6 = W (1 − |x |), (3b)

where F4 and F6 are numerical factors chosen to keep the
fourth and sixth order matrix elements in the same numerical
range; for Er3+, F4 = 60 and F6 = 13 860, see [14]. The
parameter x is the crystal field mixing term related to the ratio
of B4 to B6 and runs from −1 to +1. From equations (3a)
and (3b) it is possible to calculate the value of x . For positive
x this will be x = B4 F4

B6 F6+B4 F4
; for negative x there will be a

minus sign in the denominator. The change of sign comes
about due to the presence of the magnitude of x appearing
in the equation (3b) above. The spacing between the energy
levels is controlled by W . For W > 0, the �7 level will lie
lowest between −1 < x < −0.46, the �6 level will lie lowest
between −0.46 < x < 0.58 and for x > 0.58 the lowest
energy state will be �8.

The values of A4〈r 4〉 and A6〈r 6〉 depend on the lattice
coordination of the RE ion. For example, for an Er3+ ion
located at a substitutional site in a zincblende lattice the values
of A4〈r 4〉 and A6〈r 6〉 can be calculated from the equations [15]

A4〈r 4〉 =
(

7

36

Z1e2

R5
1

+ 7

32

Z2e2

R5
2

)
〈r 4〉 (4a)

and

A6〈r 6〉 =
(

− 1

18

Z1e2

R7
1

+ 3

64

13

4

Z2e2

R7
2

)
〈r 6〉 (4b)

where Z1 and Z2 are the charges of the neighbouring ions and
values of 〈r 4〉 and 〈r 6〉 for Er3+ are given in [8, 16]. Employing
equations (4a) and (4b) for an Er3+ ion at a Zn substitutional
site surrounded by four Se2− ions (with Z1 = −2) located
at a distance of R1 away and twelve next nearest neighbour
Zn2+ ions (Z2 = +2) at R2 away gives values of A4〈r 4〉 =
−40.4 cm−1 and A6〈r 6〉 = 2.29 cm−1, respectively when
R1 =

√
3a
4 and R2 = a

2 , with a being the ZnSe lattice constant

1 The multiplicative constants for Er3+ are α = 2.539 × 10−3, β = 4.44 ×
10−5 and γ = 2.07 × 10−6.
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taken as 0.5668 nm. The corresponding values of x and W
can be calculated to be −0.622 and 0.173 cm−1. Note that
at a substitutional site the effects of the twelve second shell
next nearest neighbour (nnn) atoms has been included in the
above calculation. The second shell of 〈110〉 oriented atoms is
located 1.633 times further out than the first shell of four 〈111〉
oriented atoms and sometimes in the literature the contribution
of the second shell for a substitutional site is ignored. In
such a situation the values of A4〈r 4〉 = −44.7 cm−1 and
A6〈r 6〉 = 2.10 cm−1 with the corresponding values of x and
W are −0.664 and 0.179 cm−1. Similar equations [15] for
interstitial sites can also be written however, as the six nnn
atoms which are in 〈100〉 directions are only 15% further out
from the nn shell of atoms, it is essential to include the effects
of the second shell. Using a similar notation to equation (4)
(we denote an interstitial site with a star) the equations take the
form

A∗
4〈r 4〉 =

(
7

36

Z1e2

R5
1

− 7

16

Z2e2

R5
2

)
〈r 4〉 (5a)

and

A∗
6〈r 6〉 =

(
− 1

18

Z1e2

R7
1

− 3

64

Z2e2

R7
2

)
〈r 6〉. (5b)

Values of A∗
4〈r 4〉 = 93.8 cm−1 and A∗

6〈r 6〉 = −1.45 cm−1

can be calculated for an Er3+ ion located at a interstitial
site surrounded by four Zn2+ ions and six Se2− ions. The
corresponding values of x and W are −0.85 and −0.29 cm−1,
respectively. These examples show how the value of x can
distinguish between a substitutional site and an interstitial site
reflecting the different arrangement of the cations and anions.
Note the value of x reflects the ratio of B4/B6 and as such the
choice of formal charges (Z1 and Z2) of the cations and anions
does not strongly affect the value of x though it will have an
affect on W .

Application of a magnetic field results in the lifting of the
Kramers degeneracy, however, as the strength of the Zeeman
interaction is small when compared with the magnitude of
the crystal field, a perturbative approach in calculating the g
values from the crystal field eigenstates can be employed. In
general, the crystal field eigenstates |ψ〉, and the time reversed
state |ψ ′〉, are a normalized superposition of the |m J 〉 states
associated with the quantum number J with the values of m J

running from −J to +J and are given by

|ψ〉 =
∑

m

cm |m J 〉 and

|ψ ′〉 =
∑

m

(−1)J−mc∗
m |−m J 〉

(6)

where
∑

m |cm|2 = 1. The presence of O4
n operator terms

in equation (1) ensures that the highest m-fold rotation axis
present is a four-fold axis and as a result the various terms of
|m J 〉 that appear in the wavefunction expansion will each differ
by four. Diagonalization of the Hamiltonian in equation (1)
using equations (3a) and (3b) gives the crystal field eigenstates
for �6 and �7 levels as

�6: 0.6332|±13/2〉 + 0.5819|±5/2〉
− 0.4507|∓3/2〉 − 0.2393|∓11/2〉 (7a)

and

�7: 0.5818|±15/2〉 + 0.3307|±7/2〉
+ 0.7182|∓1/2〉 + 0.1910|∓9/2〉. (7b)

The g value in cubic symmetry, gc, can be calculated from
the matrix element 2gJ 〈ψ|Jz |ψ〉, using the wavefunctions in
equations (7a) and (7b) above, where a value of the Landé g
value, gJ , of 6/5 is used. For the �6 and �7 Stark levels the
g values in cubic symmetry are 6.8 and 6.0, respectively. It
is important to note here that coefficients of the |m J 〉 states
in equations (7a) and (7b) do not depend on the strength of
the crystal field. This is a result of the �6 and �7 irreducible
representations only appearing once in the decomposition of
the J = 15/2 spin–orbit state [8]. For example for −1 <

x < −0.46 the ground state will be �7 state and is independent
of x so the g value will be 6.0 for all values of x in this
range. A similar argument can be applied to the �6 state when
−0.46 < x < 0.58. This independence of the g value for both
the �6 and �7 states with x is highlighted here as the analysis
of the g values in the presence of an axial crystal field will not
also require the cubic crystal field terms to be changed.

If the symmetry of the rare earth ion site is axial then
instead of a single g value, a g tensor with principal g values
g‖ and g⊥ is used, where g‖ is conventionally taken along the
axial z direction and g⊥ refers to the plane perpendicular to
z. If the total crystal field can be considered as predominantly
cubic with an additional axial component superimposed, then
within the CCF approximation the average of the trace of
the g tensor, gav, defined as gav = 1/3(g‖ + 2g⊥) will
equal the g value in cubic symmetry gc i.e. 6.8 for �6

and 6.0 for �7, respectively. As noted earlier, results from
experiments may not always match with the results from the
theory described above. For example, recently Vinh et al, on
the basis of Zeeman measurements made on an Er doped Si
MBE multilayer structure, reported an Er3+ centre (labelled
L1

1) with an average g value of 6.1 ± 0.5 which they attributed
to a �6 state [10]. Dziesiaty et al in their study of erbium
centres in ZnSe reported the presence of both Er3+ and Er2+
centres [11]. For the case of one of the Er3+ centres (labelled
centre A) g values of g1 < 0.57 (along the 〈111〉 direction),
g2 = 8.88 (along 〈110〉 direction) and g3 = 12.03 (along 〈112〉
direction) were reported which they interpreted as implying
that this centre was approximately axial with respect to the
〈111〉 direction with g‖ less than 0.5 and g⊥ taken as gav =
1/2(g2 +g3) = 10.5. Employing this strategy gives an average
g value of 6.97 which from they conclude that centre A derives
from a �6 state even though this is above the predicted value
of 6.8. Watts and Holton [17] reported some axial spectra
associated with an Er3+ in hexagonal ZnS with an average g
value of 6.665 and a centre in CdS with an average g value of
6.426. Both of these centres were attributed to a �6 ground
state. The solid lines in figure 1 show how the principal g
values must vary for a centre with an average g value of 6.0
and 6.8 along with some reported values from the literature.
Figure 1 shows that from a range of samples the calculated
average values appear to follow the pattern predicted by the
CCF approximation. However, there is a greater tendency for
more data points to lie on the line associated with the �6 state,

3
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Figure 1. Solid lines show the variation of g⊥ with g‖ for Er3+ with
gav equal to 6.0 or 6.8. Symbols are experimentally measured values
in a range of hosts: (•) ZnTe data from [12]; (◦) ZnS from [17],
(��) CdTe from [12]; (�) InP from [5], (�) BaF2 from [5] and
() CaF2 from [21].

corresponding to an average g value of 6.8. There are also
a smaller number of data points at the lower values of g⊥. In
order to investigate this behaviour we have explicitly calculated
the g values as a function of axial crystal field strength.

3. Effect of the axial crystal field

If the overall crystal field deviates strongly from cubic
symmetry then more terms are added into the Hamiltonian.
For example in a strongly tetragonal crystal field five terms
involving B0

2 , B0
4 , B4

4 , B0
6 , B4

6 are required. When the crystal
field is cubic there are inter-relationships between these terms
with B0

4 = B4, B4
4 = 5B4 and B0

6 = B6, B4
6 = −21B6. These

give the simplified form of equation (1). However in tetragonal
crystals these relationships breakdown and it is necessary to
calculate or fit from optical measurements each of the five
Bm

n parameters independently. The subject of this paper is
where an axial crystal field is superimposed upon crystal field
with predominantly cubic symmetry—the cubic crystal field
approximation. In the CCF approximation an axial crystal field
term B2O0

2 is simply added to the cubic Hamiltonian to give

Htetra = B2O0
2 + B4(O

0
4 + 5O4

4 )+ B6(O
0
6 − 21O4

6 ), (8)

with B2 = αA2〈r 2〉 as before [8] (see footnote 1). Numerical
diagonalization of equation (8) gives for a �7 crystal field
eigenstate of the form

|ψ1〉 = a1|15/2〉 + b1|7/2〉 + c1|−1/2〉 + d1|−9/2〉. (9)

The principal g values are given by

g‖ = 2gJ (〈ψ|Jz |ψ〉) and

g⊥ = gJ (〈ψ ′ |J+ + J−|ψ〉), (10)

Figure 2. (a) Variation of principal g values g‖ and g⊥ as a function
of axial crystal field for a state originating with a �7 cubic ground
state. (b) The average of the trace of g tensor, gav, as calculated from
(a) using the correct value and absolute value of g‖. The open circles
to refer to data when the absolute magnitude of g‖ is used and the
solid line when the correct g value is used.

where the coefficients a1–d1 now depend on the value of the
axial crystal field B2. Application of the ladder operators in
equation (10) to the wavefunction in equation (9) gives the
following expressions for the principal g values

g‖,1 = gJ (15a2
1 + 7b2

1 − c2
1 − 9d2

1 ) (11a)

and
|g⊥,1| = 2gJ

(√
48b1d1 + 4c2

1

)
. (11b)

The variation of the principal g values calculated for a
�7 ground state over different axial crystal fields using
equations (11a) and (11b) is shown in figure 2(a). The two
curves cross at zero axial crystal field with a g value of 6.0 as
calculated earlier. High values of g‖ (i.e. those larger than 8)

4
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can be obtained even with low values of negative axial crystal
field whereas at more negative axial crystal fields, the value g‖
tends to saturate around 18. In the same range of axial crystal
fields the value of g⊥ approaches zero; indeed the value of g⊥
is below 2 for axial crystal fields below −16 cm−1. Since the
intensity of the EPR transition is governed by the strength of
the matrix element associated with g⊥, these transitions will
not be observed. We believe this explains the low number of
data points at high values of g‖ in figure 1.

A second observation can be made from figure 2(a); for
axial crystal fields larger than 30 cm−1 the value of g‖ is less
than zero. The sign of the g value in EPR can be measured
if circularly polarized microwave radiation is used to induce
spin flip transitions. However, most experiments employ
linearly polarized radiation which is not sensitive to the sign
of the g value and this can lead to a misleading calculation
of the average g value as demonstrated in figure 2(b) where
the average g value calculated using the both the correct
(i.e. negative) and absolute values of g‖ found in figure 2(a) is
shown. For axial crystal fields larger than 30 cm−1, figure 2(b)
shows that the average g value appears to deviate from that
predicted if the CCA approximation holds and the absolute
value of g‖ is used. For an axial crystal field of 60 cm−1,
gav = 6.51 and at larger axial crystal fields (∼150 cm−1), gav

reaches 6.70 before levelling off. It is in this regime that it
may appear that the average g value is now reminiscent of that
associated with a �6 state, rather than the actual �7 state. As
a result care must be employed when interpreting the average
g value in this case and the large number of data points with
gav ∼ 6.7–6.8 in figure 1 is proof of this.

It is our contention that an observed average g value
of between 6.0 and 6.8 is due to the influence of the axial
crystal field on the �7 level. However, there are two well
known interactions that can alter the g value: the orbital–lattice
interaction due to covalency effects [17, 18] or crystal field
mixing of higher lying states [13]. The effects of covalency are
described in terms of modifications of the Landé g value gJ ,
through the introduction of the orbital reduction factor [17, 18],
usually expressed as (1 − k) as

g′
J = gJ − (1 − k)

J (J + 1)− S(S + 1)+ L(L + 1)

2J (J + 1)
. (12)

Using the value of the quantum numbers J , L and S discussed
above, a reduction of the cubic g value from 6.8 level to, say,
6.2 would require a value of (1 − k) of 0.1323. This value
can be compared with a value of (1 − k) for other rare earth
ions such as Yb3+ or Dy3+ in CaO where a value of 0.02 and
0.04, respectively, is required [18]. In the first row transition
metal series, much larger orbital lattice reduction factors of 0.2
has been reported for Fe2+ and 0.3 for Ti3+ (see [19]). As
such we do not believe that the large values of (1 − k) required
to change a cubic g value from 6.8 to 6.2 is likely to occur
in the rare earth series and we discount this as a significant
contribution. The second mechanism involves the admixture
into the ground state � by the crystal field of other states
with the same irreducible representation but in higher lying J
manifolds. For example the crystal field could mix in the �7

level originating from the 4I13/2 excited with the �7 level in

Figure 3. Variation of the coefficients a1 to d1 for a �7 ground state
as a function of axial crystal field. Note the rapid variation of a1 with
crystal field and the similar rapid change of g‖ in figure 2(a).

the 4I15/2 ground state. Kingsley and Aven [20] suggested that
the g value associated with the �7 level in the presence of this
crystal field mixing takes the form

g(�7) = 2(1 − α2)gJ 〈�7(
4I15/2)|Jz |�7(

4I15/2)〉
+ 2α2g∗

J 〈�7(
4I13/2)|Jz|�7(

4I13/2)〉 (13)

where gJ and g∗
J are the Landé g value for the �7 level in

the ground 4I15/2 spin–orbit level (with gJ = 1.2) and first
excited 4I13/2 SO state (with g∗

J = 1.108). In this case α
represents the admixture between the two states. A value of
α = 0.33 would be required to lower a g value from 6.0 to
say 5.95 which since the 4I13/2 and 4I15/2 states lie 6500 cm−1

apart would require a crystal field matrix element of over
2140 cm−1—which is unreasonably large in the rare earth ion
series. Similarly arguments would preclude the �6 state being
significantly reduced from 6.8. As such we believe that neither
of these two mechanisms is responsible for significant changes
in the average g value.

Having concluded that an upward shift in the g value from
6.0 toward 6.7 or 6.8 is not due to covalency or crystal field
induced admixtures of states, we turn to other possible reasons
by examining how each of the individual coefficients a1 to d1

in equation (9) varies with axial crystal field (figure 3). It
is apparent that the largest variation amongst the coefficients
occurs for a1 and c1 with both b1 and d1 having a much smaller
contribution. From equation (11a) we can see that the variation
of g‖,1 with axial crystal field is based on the competing
behaviour of 15a2

1 compared with −c2
1. Clearly the larger

prefactor associated with the |±15/2〉 coefficient controls the
overall behaviour and hence the similarity in the trend of g‖,1
in figure 2(a) and the coefficient a1 in figure 3. In the case
of g⊥, inspection of equation (11b) shows that g⊥,1 does not
depend on a1 and its behaviour with crystal field is governed
by c2

1 with a small contribution from b1d1. As c1 goes to zero
for axial crystal fields less than about −100 cm−1 the value of
g⊥,1 goes to zero as well and the overall crystal field eigenstates

5
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e

Figure 4. (a) Variation of principal g values g‖,2 and g⊥,2 as a
function of axial crystal field for a state originating with a �6 cubic
ground state. (b) The average of the trace of g tensor, gav.

are now mainly controlled by the |∓1/2〉 component of the
overall crystal field eigenstates. We believe that it is this state
mixing between the two dominant states |±15/2〉 and |∓1/2〉
that controls the g value.

Being able to predict when this strong mixing occurs will
be of importance in knowing when the interpretation from
CCF approximation can be believed using linearly polarized
radiation. The axial O0

2 operator transforms as 3J 2
z − J (J +1)

within a constant J manifold [21]. The four components in
|ψ1〉, associated with the �7 state, have matrix element values
of 105 for the |±15/2〉 state, −27 for |±7/2〉, −63 for |∓1/2〉
and −3 for |∓9/2〉 states which results in a clear imbalance
between the weightings of the coefficients. For the case of the
�6 level the corresponding O0

2 matrix elements are 21 for the
|±13/2〉 state, −15 for |±5/2〉, −19 for |∓3/2〉 and −9 for
|∓11/2〉. This is a more balanced wavefunction in terms of
coefficients and the corresponding g values should satisfy the

Figure 5. Variation of the difference in g values |g‖ − g⊥| for the
both the �7 and �6 states. In the case of the �6 state the difference in
g values has a slope of 0.02/cm−1 which can then be used as a
measure of the strength of the axial crystal field.

CCF approximation. In order to test this assumption we have
calculated the principal g values associated with the �6 level
as a function of axial field. The wavefunction derived from a
�6 state in an axial field can be expressed as

|ψ2〉 = a2|13/2〉 + b2|5/2〉 + c2|−3/2〉 + d2|−11/2〉. (14)

The principal g values in this case are

g‖,2 = gJ (13a2
2 + 5b2

2 − 3c2
2 − 11d2

2 ) (15a)

and
|g⊥,2| = 2gJ (

√
28 a2d2 + √

60 b2c2). (15b)

The variation of these g values (figure 4(a)) and average
g value (figure 4(b)) with axial crystal field shows that the
two principal g values do not deviate significantly from that
predicted for a �6 state in cubic symmetry (6.8). Furthermore
over the course of ±200 cm−1 variation in the axial crystal
field, the average g value remains within 0.1 of the predicted
6.8 for a �6 ground state in accordance with our assumption in
relation to the CCF approximation. Finally, we note how the
magnitude of the difference in the g values, |g‖ − g⊥|, for the
�6 state scales linearly with axial field up to 200 cm−1 with a
slope of 0.02/cm−1, see figure 5. However, we do not find such
a linear relationship with axial crystal field for the �7 state. As
such the approximation that the magnitude of the difference
in g values is not a good measure of the strength of the axial
crystal field when strong state mixing occurs.

It is possible to extend this approach for Er3+ in sites with
trigonal symmetry. The Hamiltonian for a rare earth ion in
trigonal symmetry takes the form

Htrig = B2O0
2 + B4

(
−2

3
O0

4 + 40
√

2

3
O3

4

)

+ B6

(
16

9
O0

6 + 140
√

2

9
O3

6 + 154

9
O6

6

)
. (16)
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The presence of O3
n terms ensures that the highest m-fold

axis present is now a three-fold axis and the form of the
Hamiltonian above is one in which the trigonal axis is pointing
along an equivalent 〈111〉 direction. This will mean that
the various value of |m J 〉 that appear in the wavefunction
expansion will differ by 3. For the �7 state in trigonal
symmetry the wavefunction is

|ψ3〉 = a3|15/2〉 + b3|9/2〉 + c3|3/2〉 + d3|−3/2〉
+ e3|−9/2〉 + f3|−15/2〉. (17)

We calculate g‖,3 = 3gJ (5a2
3 + 3b2

3 + c2
3 − d2

3 − 3e2
3 − 5 f 2

3 ),
however as no |m J 〉 term in |ψ3〉 differs by one from |ψ ′

3〉 the
value of g⊥,3 will equal zero and no transition will be seen. The
wavefunction for a �6 state in trigonal symmetry will be

|ψ4〉 = a4|13/2〉+b4|7/2〉+c4|1/2〉+d4|−5/2〉+e4|−11/2〉,
(18a)

and we calculate that the corresponding principal g values will
be

g‖,4 = gJ (13a2
4 + 7b2

4 − c2
4 − 5d2

4 − 11e2
4) and

|g⊥,4| = 2gJ (−
√

28 a4e4 + √
55 b4d4 − 4c2

4).
(18b)

We find as in the case of �6 in tetragonal symmetry, that the
average g value does not differ significantly from 6.8.

The above analysis has been performed for the Er3+ ion
but can be extended to other ions. While not reviewing the
magnetic resonance properties of the whole of the RE ion series
it is worth immediately noting that both Tm4+ and Ho2+ ion are
isoelectronic with the Er3+ ion. This means that they share all
the same quantum numbers and Landé g value. As a result the
analysis of the EPR measurements of these ions which show
axial spectra will need to take into account the results discussed
above. In addition the Dy3+ ion possesses nine 4f electrons
which gives it a 6H15/2 ground state (S = 5/2 and L = 5).
The composition of wavefunctions for the various Stark levels
will be the same as those in equations (7a) and (7b). Only
the Landé g value will be different being 4/3 for Dy3+ when
compared with 6/5 for Er3+. This means that the matrix
elements that are employed to calculate the cubic g value will
be the same and we can immediately calculate that the g value
associated with a �6 level will have a value of 7.55 while that of
�7 level will be 6.66. In axial symmetry the same wavefunction
expansion as those used in equations (9) and (14) will be used.
Once again the conclusions obtained here are relevant to this
ion. Only by exact calculation for the others ions is it possible
to determine if state mixing is a significant effect. One simple
test would be to examine the matrix elements associated with
how the O0

2 crystal field operator transforms for each value
of J .

4. Conclusions

We have investigated the validity of the cubic crystal field
approximation for the trivalent rare earth ion erbium in the
presence of an axial crystal field. We have calculated the
principal g values associated with the crystal field ground state
doublets (�6 and �7) as a function of axial crystal field strength
and shown that the cubic crystal field approximation holds
for the �6 ground state regardless of the type of microwave
radiation used. However, for the �7 eigenstate circularly
polarized radiation should be used. To know if the choice of
radiation is important it is necessary to examine how the axial
crystal field operator O0

2 transforms for each of the components
|m J 〉 in the wavefunction. We believe that balanced
wavefunctions obey the CCF approximation and using
circularly polarized radiation is able to resolve any ambiguity.
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